

Corvallis, OR Microbiology/Chemistry (d)
1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.494

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 7

Project: Stafford Primary School

LEAD & COPPER RULE REPORT

Client Name: West Linn - Wilsonville School District

2755 SW Borland Rd. Tualatin, OR 97062

System Name:

System ID Number: DWP Source Number:

Multiple Sources: Sample Type:

Sample Purpose: Investigative or Other

County:

Analyst: ewh

Reference Number: 23-11800

Date Received: 4/26/2023 Report Date: 5/4/2023

Approved By: bj
Authorized by:

Thanh B Phan Lab Manager, Portland

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
23_23523	4/26/2023	19220300-001NS - Room 37 Nurses Station sink	1030	LEAD	ND	ppb	15	1	200.8	4072	
		otation on it	1022	COPPER	70.7	ppb	1300	5	200.8	4072	
23_23524	4/26/2023	19220300-003SF - Room 031 Staff Workroom Faucet	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	145	ppb	1300	5	200.8	4072	
23_23525	4/26/2023	19220300-004DW - Hall C004 Drinking Fountain	1030	LEAD	2.85	ppb	15	1	200.8	4072	
			1022	COPPER	226	ppb	1300	5	200.8	4072	
23_23526	4/26/2023	19220300-005CF - Room 30 Classroom Faucet	1030	LEAD	1.68	ppb	15	1	200.8	4072	
			1022	COPPER	245	ppb	1300	5	200.8	4072	
23_23527	4/26/2023	19220300-006CF - Room 029 Classroom Faucet	1030	LEAD	3.65	ppb	15	1	200.8	4072	
			1022	COPPER	191	ppb	1300	5	200.8	4072	
23_23528	4/26/2023	19220300-007DW - Room 029 Classroom Drinking	1030	LEAD	ND	ppb	15	1	200.8	4072	
		Ů	1022	COPPER	268	ppb	1300	5	200.8	4072	
23_23529	4/26/2023	19220300-008CF - Room 028 Classroom Faucet	1030	LEAD	4.11	ppb	15	1	200.8	4072	
			1022	COPPER	244	ppb	1300	5	200.8	4072	
23_23530	4/26/2023	19220300-009DW - Room 028 Classroom Drinking Fountain	1030	LEAD	1.32	ppb	15	1	200.8	4072	
			1022	COPPER	276	ppb	1300	5	200.8	4072	
23_23531	4/26/2023	19220300-010BF - Corr.004 Bathroom faucet	1030	LEAD	1.71	ppb	15	1	200.8	4072	
			1022	COPPER	97.3	ppb	1300	5	200.8	4072	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Page 2 of 7

LEAD & COPPER RULE REPORT

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
23_23532	4/26/2023	19220300-011BF - Room T005 Single unisex bathroom sink	1030	LEAD	1.05	ppb	15	1	200.8	4072	
			1022	COPPER	45.9	ppb	1300	5	200.8	4072	
23_23533	4/26/2023	19220300-012CF - Room 027 Classroom Faucet	1030	LEAD	3.03	ppb	15	1	200.8	4072	
			1022	COPPER	147	ppb	1300	5	200.8	4072	
23_23534	4/26/2023	19220300-013DW - Room 027 Classroom Drinking Fountain	1030	LEAD	3.51	ppb	15	1	200.8	4072	
		g	1022	COPPER	136	ppb	1300	5	200.8	4072	
23_23535	4/26/2023	19220300-014CF - Room 026 Classroom Faucet	1030	LEAD	2.65	ppb	15	1	200.8	4072	
			1022	COPPER	150	ppb	1300	5	200.8	4072	
23_23536	4/26/2023	19220300-015DW - Room 026 Classroom Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
		g	1022	COPPER	178	ppb	1300	5	200.8	4072	
23_23537	4/26/2023	19220300-016CF - Room 023 Classroom Faucet	1030	LEAD	1.19	ppb	15	1	200.8	4072	
			1022	COPPER	93.9	ppb	1300	5	200.8	4072	
23_23538	4/26/2023	19220300-017DW - Room 023 Classroom Drinking Fountain	1030	LEAD	241	ppb	15	1	200.8	4072	
			1022	COPPER	241	ppb	1300	5	200.8	4072	
23_23539	4/26/2023	19220300-018CF - Room 022 Classroom Faucet	1030	LEAD	3.25	ppb	15	1	200.8	4072	
			1022	COPPER	164	ppb	1300	5	200.8	4072	
23_23540	4/26/2023	19220300-019DW - Room 022 Classroom Drinking Fountain	1030	LEAD	1	ppb	15	1	200.8	4072	
		Ů	1022	COPPER	185	ppb	1300	5	200.8	4072	
23_23541	4/26/2023	19220300-020CF - Room 021 Classroom Faucet	1030	LEAD	0.92	ppb	15	1	200.8	4072	
			1022	COPPER	96.8	ppb	1300	5	200.8	4072	
23_23542	4/26/2023	19220300-021DW - Room 021 Classroom Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
		Ů	1022	COPPER	117	ppb	1300	5	200.8	4072	
23_23543	4/26/2023	19220300-022CF - Room 020 Classroom Faucet	1030	LEAD	1.53	ppb	15	1	200.8	4072	
			1022	COPPER	101	ppb	1300	5	200.8	4072	
23_23544	4/26/2023	19220300-023DW - Room 020 Classroom Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	113	ppb	1300	5	200.8	4072	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Page 3 of 7

LEAD & COPPER RULE REPORT

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
23_23545	4/26/2023	19220300-024CF - Room 019 Classroom Faucet	1030	LEAD	1.33	ppb	15	1	200.8	4072	
		Classicolii i aucet	1022	COPPER	95.9	ppb	1300	5	200.8	4072	
23_23546	4/26/2023	19220300-025DW - Room 019 Classroom Drinking Fountain	1030	LEAD	2.23	ppb	15	1	200.8	4072	
		Sidestream Printing Federical	1022	COPPER	90.6	ppb	1300	5	200.8	4072	
23_23547	4/26/2023	19220300-026CF - Room 018 Classroom Faucet	1030	LEAD	1.09	ppb	15	1	200.8	4072	
			1022	COPPER	81.7	ppb	1300	5	200.8	4072	
23_23548	4/26/2023	19220300-028DW - Corridor C008 Drinking Fountain	1030	LEAD	3.89	ppb	15	1	200.8	4072	
			1022	COPPER	260	ppb	1300	5	200.8	4072	
23_23549	4/26/2023	19220300-081WC - Corridor C008 Water chiller	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	67.9	ppb	1300	5	200.8	4072	
23_23550	4/26/2023	19220300-029CF - Room 017 Classroom Faucet	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	156	ppb	1300	5	200.8	4072	
23_23551	4/26/2023	19220300-030DW - Room 017 Classroom Drinking Fountain	1030	LEAD	3.03	ppb	15	1	200.8	4072	
			1022	COPPER	277	ppb	1300	5	200.8	4072	
23_23552	4/26/2023	19220300-031CF - Room 016 Classroom Faucet	1030	LEAD	1.14	ppb	15	1	200.8	4072	
			1022	COPPER	194	ppb	1300	5	200.8	4072	
23_23553	4/26/2023	19220300-032DW - Room 016 Classroom Drinking Fountain	1030	LEAD	1.89	ppb	15	1	200.8	4072	
			1022	COPPER	259	ppb	1300	5	200.8	4072	
23_23554	4/26/2023	19220300-033BF - Room T009 Boys Bathroom Sink	1030	LEAD	1.63	ppb	15	1	200.8	4072	
			1022	COPPER	33.2	ppb	1300	5	200.8	4072	
23_23555	4/26/2023	19220300-034DW - Corridor C010 Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
		3 11 11	1022	COPPER	108	ppb	1300	5	200.8	4072	
23_23556	4/26/2023	19220300-035BF - Room T008 Girls Bathroom Sink	1030	LEAD	1.63	ppb	15	1	200.8	4072	
			1022	COPPER	169	ppb	1300	5	200.8	4072	
23_23557	4/26/2023	19220300-036DW - Room 012 Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	231	ppb	1300	5	200.8	4072	
23_23558	4/26/2023	19220300-037DW - Room 012 Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Page 4 of 7

LEAD & COPPER RULE REPORT

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
23_23558	4/26/2023	19220300-037DW - Room 012 Drinking Fountain	1022	COPPER	220	ppb	1300	5	200.8	4072	
23_23559	4/26/2023	19220300-038WB - Corridor C008 Water Bottle Filling Station	1030	LEAD	ND	ppb	15	1	200.8	4072	
		Water Bettle Filling Station	1022	COPPER	69.0	ppb	1300	5	200.8	4072	
23_23560	4/26/2023	19220300-039CF - Room 014 Classroom Faucet	1030	LEAD	1.51	ppb	15	1	200.8	4072	
			1022	COPPER	93.0	ppb	1300	5	200.8	4072	
23_23561	4/26/2023	19220300-040DW - Room 014 Classroom Drinking Fountain	1030	LEAD	2.93	ppb	15	1	200.8	4072	
			1022	COPPER	175	ppb	1300	5	200.8	4072	
23_23562	4/26/2023	19220300-043SF - Room 013 Staffroom Sink	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	81.9	ppb	1300	5	200.8	4072	
23_23563	4/26/2023	19220300-044DW - Room 013 Staffroom Drinking Fountain	1030	LEAD	5.83	ppb	15	1	200.8	4072	
		Standon Printing Contain	1022	COPPER	133	ppb	1300	5	200.8	4072	
23_23564	4/26/2023	19220300-047CF - Room 008 Classroom Faucet	1030	LEAD	1.02	ppb	15	1	200.8	4072	
		Glassicom raussi.	1022	COPPER	185	ppb	1300	5	200.8	4072	
23_23565	4/26/2023	19220300-048DW - Room 008 Classroom Drinking Fountain	1030	LEAD	3.18	ppb	15	1	200.8	4072	
			1022	COPPER	269	ppb	1300	5	200.8	4072	
23_23566	4/26/2023	19220300-049CF - Room 007 Classroom Faucet	1030	LEAD	1.22	ppb	15	1	200.8	4072	
			1022	COPPER	188	ppb	1300	5	200.8	4072	
23_23567	4/26/2023	19220300-050DW - Room 007 Classroom Drinking Fountain	1030	LEAD	4.25	ppb	15	1	200.8	4072	
			1022	COPPER	231	ppb	1300	5	200.8	4072	
23_23568	4/26/2023	19220300-051CF - Room 006 Classroom Faucet	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	184	ppb	1300	5	200.8	4072	
23_23569	4/26/2023	19220300-052DW - Room 006 Classroom Drinking	1030	LEAD	3.15	ppb	15	1	200.8	4072	
		<u> </u>	1022	COPPER	258	ppb	1300	5	200.8	4072	
23_23570	4/26/2023	19220300-053BF - Room T010 Single Bathroom Sink	1030	LEAD	1.28	ppb	15	1	200.8	4072	
			1022	COPPER	113	ppb	1300	5	200.8	4072	
23_23571	4/26/2023	19220300-054BF - Room T011 Single Bathroom Sink	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	93.9	ppb	1300	5	200.8	4072	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Page 5 of 7

LEAD & COPPER RULE REPORT

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
23_23572	4/26/2023	19220300-055BF - Room T012 Boys Bathroom	1030	LEAD	1.10	ppb	15	1	200.8	4072	
		Datilloon	1022	COPPER	91.9	ppb	1300	5	200.8	4072	
23_23573	4/26/2023	19220300-056BF - Room T013 Girls Bathroom	1030	LEAD	1.44	ppb	15	1	200.8	4072	
		24	1022	COPPER	92.7	ppb	1300	5	200.8	4072	
23_23574	4/26/2023	19220300-057CF - Room 005 Classroom Faucet	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	183	ppb	1300	5	200.8	4072	
23_23575	4/26/2023	19220300-058DW - Room 005 Classroom Drinking Fountain	1030	LEAD	1.59	ppb	15	1	200.8	4072	
			1022	COPPER	240	ppb	1300	5	200.8	4072	
23_23576	4/26/2023	19220300-059CF - Room 004 Classroom Faucet	1030	LEAD	1.20	ppb	15	1	200.8	4072	
			1022	COPPER	103	ppb	1300	5	200.8	4072	
23_23577	4/26/2023	19220300-060DW - Room 004 Classroom Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	214	ppb	1300	5	200.8	4072	
23_23578	4/26/2023	19220300-061CF - Room 003 Classroom Faucet	1030	LEAD	1.34	ppb	15	1	200.8	4072	
			1022	COPPER	119	ppb	1300	5	200.8	4072	
23_23579	4/26/2023	19220300-062DW - Room 003 Classroom Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
		5	1022	COPPER	149	ppb	1300	5	200.8	4072	
23_23580	4/26/2023	19220300-063CF - Room 002 Classroom Faucet	1030	LEAD	1.17	ppb	15	1	200.8	4072	
			1022	COPPER	124	ppb	1300	5	200.8	4072	
23_23581	4/26/2023	19220300-064DW - Room 002 Classroom Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
		Ü	1022	COPPER	148	ppb	1300	5	200.8	4072	
23_23582	4/26/2023	19220300-065CF - Room 001 Classroom Faucet	1030	LEAD	1.70	ppb	15	1	200.8	4072	
			1022	COPPER	150	ppb	1300	5	200.8	4072	
23_23583	4/26/2023	19220300-066DW - Room 001 Classroom Drinking Fountain	1030	LEAD	ND	ppb	15	1	200.8	4072	
		g	1022	COPPER	150	ppb	1300	5	200.8	4072	
23_23584	4/26/2023	19220300-067DW - Corridor C003 Drinking Fountain	1030	LEAD	2.05	ppb	15	1	200.8	4072	
			1022	COPPER	259	ppb	1300	5	200.8	4072	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Page 6 of 7

LEAD & COPPER RULE REPORT

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
23_23585	4/26/2023	19220300-068DW - Room 044 Classroom Drinking Fountain	1030	LEAD	2.09	ppb	15	1	200.8	4072	
		Classicom Brinking Fountain	1022	COPPER	136	ppb	1300	5	200.8	4072	
23_23586	4/26/2023	19220300-069DW - Room 044 Classroom Drinking Fountain	1030	LEAD	1.24	ppb	15	1	200.8	4072	
		Cassissin Eliming Contain	1022	COPPER	105	ppb	1300	5	200.8	4072	
23_23587	4/26/2023	19220300-070CF - Room 044 Classroom Faucet	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	114	ppb	1300	5	200.8	4072	
23_23588	4/26/2023	19220300-082WB - Room 044 water bottle filler	1030	LEAD	ND	ppb	15	1	200.8	4072	
			1022	COPPER	100	ppb	1300	5	200.8	4072	
23_23589	4/26/2023	19220300-071SF - Room 042A Staff Faucet	1030	LEAD	3.12	ppb	15	1	200.8	4072	
			1022	COPPER	280	ppb	1300	5	200.8	4072	
23_23590	4/26/2023	19220300-072BF - Room T014 Bathroom Sink	1030	LEAD	1.60	ppb	15	1	200.8	4072	
			1022	COPPER	308	ppb	1300	5	200.8	4072	
23_23591	4/26/2023	19220300-073BF - Room T014 Bathroom Sink	1030	LEAD	3.13	ppb	15	1	200.8	4072	
			1022	COPPER	301	ppb	1300	5	200.8	4072	
23_23592	4/26/2023	19220300-074KF - Room 043 Kitchen South facing handwashing sink	1030	LEAD	4.27	ppb	15	1	200.8	4072	
		Countries in a country on in	1022	COPPER	401	ppb	1300	5	200.8	4072	
23_23593	4/26/2023	19220300-075KF - Room 043 Kitchen South facing pot washing sink	1030	LEAD	1.85	ppb	15	1	200.8	4072	
		Court assing por maching simil	1022	COPPER	186	ppb	1300	5	200.8	4072	
23_23594	4/26/2023	19220300-076KF - Room 043 Kitchen East facing hand washing	1030	LEAD	5.13	ppb	15	1	200.8	4072	
			1022	COPPER	264	ppb	1300	5	200.8	4072	
23_23595	4/26/2023	19220300-077KF - Room 043 Kitchen North facing pot washing sink	1030	LEAD	4.46	ppb	15	1	200.8	4072	
		The far is a single port and single a single	1022	COPPER	268	ppb	1300	5	200.8	4072	
23_23596	4/26/2023	19220300-078BF - Room T015 Single Bathroom Sink	1030	LEAD	1.50	ppb	15	1	200.8	4072	
		23Olik	1022	COPPER	67.1	ppb	1300	5	200.8	4072	
23_23597	4/26/2023	19220300-079BF - Room T016 Single Bathroom Sink	1030	LEAD	1.68	ppb	15	1	200.8	4072	
		23Olin Olin	1022	COPPER	70.6	ppb	1300	5	200.8	4072	
23_23598	4/26/2023	19220300-080SF - Room 047B Work Room Sink	1030	LEAD	5.23	ppb	15	1	200.8	4072	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Page 7 of 7

LEAD & COPPER RULE REPORT

Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
4/26/2023	19220300-080SF - Room 047B Work Room Sink	1022	COPPER	194	ppb	1300	5	200.8	4072	
4/26/2023	19220300-083OS - Courtyard A	1030	LEAD	2.16	ppb	15	1	200.8	4072	
	outside spigot	1022	COPPER	148	ppb	1300	5	200.8	4072	
4/26/2023	19220300-085OS - Courtyard C	1030	LEAD	24.4	ppb	15	1	200.8	4072	
		1022	COPPER	138	ppb	1300	5	200.8	4072	
	4/26/2023	4/26/2023 19220300-080SF - Room 047B Work Room Sink 4/26/2023 19220300-083OS - Courtyard A outside spigot	4/26/2023 19220300-080SF - Room 047B Work Room Sink 1022 4/26/2023 19220300-083OS - Courtyard A outside spigot 1030 4/26/2023 19220300-085OS - Courtyard C outside spigot 1030	4/26/2023 19220300-080SF - Room 047B Work Room Sink 1022 COPPER 4/26/2023 19220300-083OS - Courtyard A outside spigot 1030 LEAD 4/26/2023 19220300-085OS - Courtyard C outside spigot 1030 LEAD	4/26/2023 19220300-080SF - Room 047B Work Room Sink 1022 COPPER 194 4/26/2023 19220300-083OS - Courtyard A outside spigot 1030 LEAD 2.16 4/26/2023 19220300-085OS - Courtyard C outside spigot 1030 LEAD 24.4	4/26/2023 19220300-080SF - Room 047B Work Room Sink 1022 COPPER 194 ppb 4/26/2023 19220300-083OS - Courtyard A outside spigot 1030 LEAD 2.16 ppb 4/26/2023 19220300-085OS - Courtyard C outside spigot 1030 LEAD 24.4 ppb	4/26/2023 19220300-080SF - Room 047B Work Room Sink 1022 COPPER 194 ppb 1300 4/26/2023 19220300-083OS - Courtyard A outside spigot 1030 LEAD 2.16 ppb 15 4/26/2023 19220300-085OS - Courtyard C outside spigot 1030 LEAD 24.4 ppb 15	4/26/2023 19220300-080SF - Room 047B Work Room Sink 1022 COPPER 194 ppb 1300 5 4/26/2023 19220300-083OS - Courtyard A outside spigot 1030 LEAD 2.16 ppb 15 1 4/26/2023 19220300-085OS - Courtyard C outside spigot 1030 LEAD 24.4 ppb 15 1	4/26/2023 19220300-080SF - Room 047B Work Room Sink 1022 COPPER 194 ppb 1300 5 200.8 4/26/2023 19220300-083OS - Courtyard A outside spigot 1030 LEAD 2.16 ppb 15 1 200.8 4/26/2023 19220300-085OS - Courtyard C outside spigot 1030 LEAD 24.4 ppb 15 1 200.8	4/26/2023 19220300-080SF - Room 047B Work Room Sink 1022 COPPER 194 ppb 1300 5 200.8 4072 4/26/2023 19220300-083OS - Courtyard A outside spigot 1030 LEAD 2.16 ppb 15 1 200.8 4072 4/26/2023 19220300-085OS - Courtyard C outside spigot 1030 LEAD 24.4 ppb 15 1 200.8 4072

NOTES:

 $[\]ensuremath{\mathsf{RL}}$ (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Burlington, WA Corporate Laboratory (a)
1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 • 360.757.

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212 Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d)
1100 NE Circle Blvd. Ste 130 - Corvallis. OR 97330 - 541,753.4

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 1

Project: Stafford Primary School

Reference Number: 23-09586

LEAD & COPPER RULE REPORT

Client Name: West Linn - Wilsonville School District

2755 SW Borland Rd. Tualatin, OR 97062

System Name: Analyst: ewh

System ID Number: Date Received: 4/6/2023

DWP Source Number: Report Date: 4/18/2023

Multiple Sources: Approved By: bj
Sample Type: Authorized by:

Sample Purpose: Investigative or Other

County:

ab Manager, Portland

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
3_19059	4/6/2023	19220500-002BF - Room T002 Staff Bathroom Sink	1030	LEAD	1.5	ppb	15	1	200.8	4072	
		Bathroom omk	1022	COPPER	194	ppb	1300	5	200.8	4072	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Corvallis, OR Microbiology/Chemistry (d)

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 1

Project: Stafford Primary Water

LEAD & COPPER RULE REPORT

Client Name: West Linn - Wilsonville School District

2755 SW Borland Rd. Tualatin, OR 97062

System Name:

System ID Number: DWP Source Number:

Multiple Sources: Sample Type:

Sample Purpose: Investigative or Other

County:

Testing

Analyst: ewh
Date Received: 4/7/2023
Report Date: 4/19/2023

Reference Number: 23-09688

Approved By: bj

Authorized by:

Thanh B Phan ab Manager, Portland

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
23_19321	4/7/2023	19220500-041CF - Stafford Primary	1030	LEAD	5.4	ppb	15	1	200.8	4072	
			1022	COPPER	182	ppb	1300	5	200.8	4072	
23_19322	4/7/2023	19220500-042DW - Stafford Primary	1030	LEAD	4.3	ppb	15	1	200.8	4072	
			1022	COPPER	156	ppb	1300	5	200.8	4072	
23_19323	4/7/2023	19220500-045CF - Stafford Primary	1030	LEAD	4.9	ppb	15	1	200.8	4072	
			1022	COPPER	218	ppb	1300	5	200.8	4072	
23_19324	4/7/2023	19220500-046DW - Stafford Primary	1030	LEAD	1.7	ppb	15	1	200.8	4072	
			1022	COPPER	146	ppb	1300	5	200.8	4072	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Corvallis, OR Microbiology/Chemistry (d)
1100 NE Circle Blvd. Ste 130 - Corvallis. OR 97330 - 541,753.494

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 1

Project: Stafford Primary School

Reference Number: 23-13348

LEAD & COPPER RULE REPORT

Client Name: West Linn - Wilsonville School District

2755 SW Borland Rd. Tualatin, OR 97062

System Name: Analyst: ewh

System ID Number: Date Received: 5/9/2023

DWP Source Number: Report Date: 5/15/2023

Multiple Sources: Approved By: bj Sample Type: Authorized by:

Sample Purpose: Investigative or Other

County:

Thanh B Phan Lab Manager, Portland

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
23_26770	5/9/2023	19220300-017DW - Room 023 Classroom Drinking Fountain	1030	LEAD	13.3	ppb	15	1	200.8	046	
		Glassissin Elimining i sankani	1022	COPPER	116	ppb	1300	5	200.8	046	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).

Corvallis, OR Microbiology/Chemistry (d)
1100 NE Circle Blvd. Ste 130 - Corvallis. OR 97330 - 541.753.494

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 1

Project: Stafford Primary

Reference Number: 23-18173

LEAD & COPPER RULE REPORT

Client Name: West Linn - Wilsonville School District

2755 SW Borland Rd. Tualatin, OR 97062

System Name: Analyst: tjb

System ID Number: Date Received: 6/20/2023

DWP Source Number: Report Date: 7/7/2023

Multiple Sources: Approved By: bj

Sample Type: Authorized by:

Sample Purpose: Investigative or Other

County:

Thanh B Phan Lab Manager, Portland

Lab Number	Date Collected	Site / Location	EPA#	Analyte Name	Result	Units	AL	RL	METHOD	Lab	Comments
3_35991	6/20/2023	19220300-085OS - Courtyard "C"	1030	LEAD	ND	ppb	15	1	200.8	046	
			1022	COPPER	91.3	ppb	1300	5	200.8	046	

NOTES:

RL (Reporting Level): indicates the minimum reporting level.

AL Federal Action Levels are 0.015 mg/L (15 ppb) for Lead and 1.3 mg/L (1300 ppb) for Copper under the Lead and Copper Rule for public water systems. A blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the compound was not detected above the Reporting Level (RL).